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NOTICES 

When Government drawings, specifications, o r  other data a r e  used 
for any purpose other than in connection with a definitely related Gov- 
ernment procurement operation, the United States Government thereby 
incurs no responsibility nor any obligation whatsoever,  and the fact that 
the Government may have formulated, furnished, or in any way supplied 
the said drawings, specifications, or other data, is  not t o  be regarded by 
implication o r  otherwise a s  in any manner licensing the holder o r  any 
other person o r  corporation, or  conveying any rights or  permiss ion  t o  
manufacture, use, o r  sell  any patented invention that may in any way be 
related thereto. 

The Government has the right to reproduce, use,  and distribute this 
report  for governmental purposes in accordance with the contract  under 
which the repor t  was produced. To  protect the propr ie ta ry  in te res t s  of 
the contractor and to avoid jeopardy of i t s  obligations to  the Government, 
the report  may not be re leased  for  non-governmental use  such as might 
constitute general  publication without the expres s  pr ior  consent of The 
Ohio State University Research  Foundation. 

Qualified reques te rs  may obtain copies of this r epor t  f rom the 
Defense Documentation Center,  Cameron Station, Alexandria, Virginia. 
Department of Defense contractors must be  established for  DDG se rv -  
ices,  o r  have their  "need-to-know" certif ied by the cognizant mili tary 
agency of the i r  project  o r  contract .  
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THE APERTURE ADMITTANCE OF A RECTANGULAR 

WAVEGUIDE RADIATING INTO A LOSSY HALF-SPACE 

INTRODUCTION 

In this report  the effective terminating admittance of a rectangular 
waveguide radiating into a lossy half-space is derived. 
opens into the lossy region through a n  aperture  in an  infinite ground plane. 
The electr ic  field in the aperture is assumed to  have the form of the TE,y 
waveguide mode. 
found by computing the complex power flowing through the aperture.  

The waveguide 

The terminating admittance of the waveguide is then . 

Curves of the terminating admittance have been plotted as a function 
of the complex propagation constant "k" in  the lossy half-space for three 
common aperture sizes. Values of k corresponding to both positive and 
negative dielectric constants have been included, so that the curves wil l  
be useful in the design and interpretation of experiments for measuring 
plas ma prope rt ie s . 

This material  is intended to  serve as a first approximation to the 
case of a thick plasma layer. 

Although this general problem has been treated previously, * no 
information has been available for a half-space with an a rb i t ra ry  permit- 
tivity and conductivity. 
found a s  a function of aperture size o r  frequency, with the half-space 
assumed to  be free-space. 

In previous work, aper ture  admittance has been 

*See, for example, M. H. Cohen, T. H. Crowley, C. A. Levis, "The 
Aperture Admittance of a Rectangular Waveguide Radiating into Half- 
Space, '' The Ohio State University Antenna Laboratory Report 339-22, 
14 November 1951. Also, L. Lewin, "Advanced Theory of Waveguide,'' 
Iliffe and Sons, Ltd. , London, 1951, p. 121. 
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FORMULATION 

Consider a rectangular waveguide which radiates through an infinite 
ground plane into a lossy half-space. 
infinitely conducting. 
dimensions ( a , b ) ,  as shown in Fig .  1. 

The ground plane is assumed to be 
The waveguide opening in the ground plane has  

X 

F i g .  1. Geometry of waveguide aperture .  

The semi-infinite region z > 0 is assumed to be isotropic and 
homogeneous, and is characterized by a complex propagation constant 

where k =  
w =  

- 
Po - 

a =  
E =  

complex propagation constant 
radian frequency 
permeability of f ree  space 
permittivity of z > 0 region 
conductivity of z > 0 region. 

tiwt The t ime convention e and rationalized MKS units will be used. 
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The electric field in the aperture i s  assumed to have the form of 
Thus TElo waveguide mode, with the electric field in the x-direction. 

10: elsewhere . 

The normalizing constant jx is included for  the following reason. 
The t ransverse field components of the TEIo mode may be writ ten 

- - 
where et(x,y),  ht(xJy)  a r e  the vector mode functions* satisfying the 
normalization relations 

s 2  s2 
a b 

x=-- 2 y=--z 
and V(z ) ,  I(z) a r e  the "transmission line" voltage and current. 
constant 4 2 / i n c l u d e d  in (2)  corresponds to an  aperture  field of unit 
voltage. 

The 

The aperture  admittance Y w i l l  be found by computing the complex 
power P flowing through the aperture: 

(5) 

"Harrington, R. F. , Time Harmonic Electromagnetic Fields,  p. 383. 
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and then using the relation 

where V is the aperture "voltage" and the as te r i sk  indicates the complex 
conjugate. 
our choice of unit aper ture  voltage. 

The last equality in (6) is numerically correct  because of 

With the aperture  field as given in (2), the field is everywhere TE ' *  
to the y-axis. 
potential 

Hence the field may be represented by an  electr ic  vector 

- 
(7) F = ? +  

where + satisfies the wave equation 

with appropriate boundary conditions.' The electr ic  and magnetic fields 
a r e  given by 

In particular 

' 1691-1 

*For a proof of this ,  see  Appendix A. 
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For  + we choose a solution: 

- w  - w  

where the square root is chosen so that 

corresponding to propagation in the tz-direction. Then from (1 l ) ,  

w o o  
-ikzz -ik y -ikxx 

(17) l&(x,y,z) = -ik,f(k,,ky)e e Y e  dkx dky . 
v u  

-00 - w  

The inverse t ransform,  evaluated a t  z = 0 ,  gives 

1691-1 

Substituting f o r  s ( x , y , o )  from (2) results in 
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Hence 

- 1 JT - [ - 2 sin ( k,a 'Os(?) ] 
2 a' - kz b2 - ab k, 

Y 

i (20) f(kx,ky) = - 
at - kZ b' 

Y 
= kxkz 

and 4 in (13) is then 

-ikzz -ik y -ikxx dkxdky e e Y e  
r k ~ k ~  (rz - kz bZ ) 

Y - 0 6  - m  

Then from (11) and (12), E, and H a r e  found to be: Y 

Y Y - m - m  

(a' - kZ b2 ) 
Y 

dkx dky . 

The complex power through L e  aperture  is 
a - b - 

a 
2 y=-$ ,=-- 
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Since it is difficult to  find H (x ,y ,o)  directly from (23), Parseval’s  
theorem and the convolution theorem will be used to  evaluate (24). 
F o r  the Fourier  transform pair 

Y 

- 0 0  - 0 0  

Parseval’s  theorem is:  

-00 - w  -00 - 0 0  

and a special case of the convolution theorem is 

- w  -00 - w  -00 

Ex(x,y,c) is zerc 0 ~ t s i . 1 ~  the aprtiire- Hence the l imits of in- 
tegration in (24) may be extended to  infinity. 
theorem and Eqs. (6) ,  (22) ,  (23), and (24), the admittance Y is found 
to  be 

Then from Parseval’s  

(29) Y = 2P* = S”s” E:(x,y,o) 

-03 - 0 0  

= (2H)‘ - 
-03 - w  

(k2 - k z )  + dkx dk 

Y 
Y’ kx kZ (IT‘- kZ b2)2 

1691-1 I 7 



Next the t e rms  of the integrand may be recombined as follows. 
Let 

sin2 (F) cos2 (+) k b  
2b(k2 - k: ) 

awpon2 k2 
(30) F,(kx,ky’ = 

(n2 - k2 b2)’ 
X Y 

From Eq. (28), 

00 .00 

(32) Y = (271)‘s 5 Fi (kx,ky)F2(kx,ky)dkx dky = lwlwfl (x,y)f2(-x,  -y) dx dy 

- w - - w  -03 - 0 0  

* 
where f, ( x ,y ) ,  f2(x,y) a r e  the t ransforms of F, (kx,k ). 

Now we proceed to  find f, ( x ,y )  and f2(x,y).  

Y 

Consider f, (x ,y)  f i rs t :  

- w  -00 

sin2(F$cos2( y) 
-i<x -ik y O0 2b(k2-k2) 

e e Y dk, dky 
(n2 - k 2 b 2 ) 2  

Y - 0 0  - 0 0  

* 
This technique of rearranging the t e r m s  of the integrand and making 
repeated use  of convolution theorems appears  to  be a useful t r ick  f o r  
problems of this sort .  By trying different combinations , one can find 
severa l  equivalent integrals for  P. The fo rm chosen here  seemed to  
be the most convenient f o r  numerical  evaluation. 

8 



-ik y 
m 

e e Y 

- m  Y 
at- k2 b2 ) ’ (34) = 

X 

These integrals a r e  easily done, and the result  is : 

where 

D,(b- 1 y I ) cos t Dt sin - + l Y  I 
b 

h(Y) = 

I“ 

Next, for  f z (x ,y ) ,  we have 

1691-1 9 



= s O O l ~  e-ik,x -ik y 
e Y  

(41) d& dky. 
J-kt-k” 

Y x  - m  -00 

* Doing the integration on k, first , we find: 

The integration on 5 then yields 

- w  

-ik x2 t y2 
e 1 (44) = 2 s i -  

** The integral in (43) is known as Weyrich’s integral. 

Thus,  (32) gives 

and since g(x) = g(-x) and h(y) = h(-y),  

* Equation (42) is derived in Appendix 

Y may be writ ten 

B. 

1691-1 

**W. Magnus and F. Oberhettinger, “Formulas  and Theorems f o r  the 
functions of Mathematical Physics ,  ” Chelsea Publishing CO. Y 

New York, 1954; p. 34. 
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- ikJx2 t y2 
e 

(46) Y = dx dy. 

Finally, substituting for  g(x),  h(y) , 

- ik Jm 
(47) Y = - 8 b i  1 Sa (a-x) [Dl (b-y) cos 7 t D2 sin ”]’ dx dy. 

aWF0 Jm 
y=o x=o 

It is convenient, for numerical evaluation of Y,  to normalize 
Eq. (47) with respect to  the free-space constants. 
space propagation constant, 

Let ko be the f ree-  

(48) k, = po Eo - - I-’- :: 
(A, is the free-space wavelength), and let  yo be the free-space character-  
ist ic admittance, 

Then (47) may be written 

- 8 i J  S (A-q)[Cl(B-e)cos- t CZsin- “3 B 
re 

Yo A B 

A .B (50) Y n - -  - Y  - 

1691-1 

where 

(51) A = koa 
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(52) B = kob 

and Y, is the normalized aper ture  admittance. 

NUMERICAL RESULTS AND INTERPRETATION 

Equation (50) has been evaluated in the university 's  Numerical 
Computation Laboratory with the IBM 1620 Digital Computer for  th ree  
s izes  of aper tures:  

IT (a) A = - B = n  2 '  

3T', B = - 3a 
2 

(b) A = - 
4 

(c) A = T ,  B = 2 8  

The computation was done by means of Simpson's rule  after a n  
appropriate change of variables. 
1620 Computer program used are discussed in Appendix C. 

The details  of this calculation and the 

The numerical results a r e  shown in Figs.  2 through 6,  The 
admittance Yn is plotted in t e r m s  of normalized conductance Gn and 
normalized susceptance B,: 

(55) Yn = Gn + i Bn. 

1691-1 12 
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Fig.  3 .  Normalized aper ture  admittance. 
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Fig.  4. Normalized aper ture  admittance. 
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Fig. 5. Normalized aper ture  admittance. 

1691-1 

Fig.  6. Normalized aper ture  admittance.  
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With C and $ defined by 

the results a r e  given for various values of C and $. 

Figures 2 and 3 show Yn for the case A = 5 , B = r. 
1 and 0 

Figure 2 
$ I 90", and Fig.  3 f o r  0 5 C 5 5 2 gives the results for 0 S C 

and 0 2 (b 2 90". Figures 4 and 5 show Yn for the case A = - 3n B=,. 3 r  
In Fig.  4, the limits a r e  0 S C 5 1 and 0 5 (b < 90' and in Fig. 4 '  5, 2 

O S C 2 3 .  
0 5 $ 90". 

F i g u r e 6  shows Y n f o r A = a ,  B = 2 r  a n d O s C ( 2 ,  

Finally, as a check on the numerical results,  the integral f o r  Yn 
may be evaluated approximately f o r  the case where k has a large 
(complex) value. In Eq. (50), 

the change of variables: 

gives the substitution 

If (k/ko) has a large (negative) imaginary part, the only contribution 
to the integral in (50) wil l  occur in the vicinity of r = 0. 
the other t e rms  in the integrand may be approximated by 

In this region 

1691-1 17 



A l s o  the range of integration on r may be extended to  infinity with little 
change in the value of the integral. 
becomes 

With these simplifications (50) 

51 - - i(k)r 
2 

(63) - = 8 B i J m S  A C , B e  d r  de 
YO A 

r = O  8=O 

= 41r C, B2 (5) 
From (53), fo r  large (k/ko),  C1 becomes 

so (64) yields 

a surprisingly simple result .  
indicated in Figs .  2 through 6 .  

This behavior for  large (k/ko) is clearly 

F o r  small (k/k,) it is difficult to find a simple approximation fo r  
Yn f rom Eq. (50) .  However, for the case where k/k, is purely imaginary, 
it is easy to see that Eq. (50) gives a purely imaginary admittance, 
because C1 and C, a r e  real  and the integrand has  a real value. 

1691-1 18 



The reason f o r  this can be appreciated by examining Eq. (23) for  
the magnetic field. In the aperture,  (23)  gives: 

-ik,x -ikyy 
e e dk, dky. 

This may be written 

- w  - m  

where 

Then by making use  of the convolution theorem 

- m  - 0 0  - w  - m  

where 

1691-1 



-03 - m  

and the transform pairs  given by Eq. (22 )  and Eqs.  (40) through (44), 
H may be wfitten 

a b Y 

Now for  the case where Re(k) = 0 ,  the integrand in  (74) is rea l ,  
kZ is rea l ,  and hence Hy is purely imaginary.  This means that the 
electr ic  and magnetic fields in the aper ture  a r e  in t ime quadrature .  
The complex power flow through the aper ture ,  as  given by Eq. (24), 
is therefore imaginary. 

This situation is s imi la r  to  the case of a large waveguide terminated 
by a small  cutoff waveguide, a s  i l lustrated in F ig .  7 .  

Large Waveguide 
1 
I Small Waveguide 

Below C u t o f f  + Incident 
T E,o Mode 7 

Fig.  7. Waveguide analogy. 

In the small  waveguide , which is cutoff , the e lec t r ic  and magnetic 
fields a r e  in phase quadrature and the effective termination of the large 
guide is a pure susceptance. 

16 91- 1 
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It i s  interesting to note that f o r  k = 0 ,  the magnetic field is 'quasi-  
static.  F o r  a fixed aperture  s i ze  and fixed frequency, the condition k = 0 
corresponds to E = 0 ,  0' = 0 in Eq. (l), which leads to a Laplace's equation 
for the magnetic field. (The case k = 0 can also be interpreted as the 
zero-frequency limit; but since the curves in Figs .  2 through 6 a r e  plotted 
for  constant A = koa and B = kob, the physical aper ture  size must be 
considered as varying inversely with frequency in this case .) 

? 

-.- i CONCLUSIONS 
I Y L O  il 

The terminating admittance of a rectangular waveguide radiating 
through a ground sheet into a lossy half-space has been'found. 
resul ts  have been computed for three aperture  s izes  and a r e  given in 
F i g s .  2 through 6 .  It is noted that i f  the propagation constant k is imaginary, 
the aperture  admittance is a pure inductive susceptance. Also, for  large 
values of k ,  the normalized aperture admittance is approximately given 
by k/ko, independent of the aperture dimensions. 

Numerical 

These results should be useful for experimental measurements of 
the properties of a lossy medium (such as a plasma).  
values of aper ture  admittance, the propagation constant k may be found 
from Figs .  2 through 6 .  

F rom experimental 

Then the permittivity and permeability of the 
medium can be found from k by Eq. (1). w 
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APPENDIX A 

The purpose of this section is to  justify that the field generated by 
the aperture  in Fig.  1 is T E  to  the y-axis.  

The aperture field is assumed to  have the form: 

The fields in the region z > 0 generated by this Ex(x,y,  0) will be the 
same as those generated by a magnetic sheet current  in the y-direction 
of the form 

/ 

: elsewhere I" 
which radiates in  the center of an  infinite lossy medium ( i . e . ,  with no 
ground plane). 
(A-1) may be seen from the following discussion. 

That this source is equivalent t o  the aperture  field in 

Suppose a source S ,  connected - -  to  the waveguide behind the ground 
plane, generates the fields (E ,  H) in the waveguide and in  the lossy region, 
as shown in Fig. A-1. 

Visualize a hypothetical surface I '  

front of the ground plane,as shown in Fi 
I '  located a slight distance in  

Now suppose electr ic  and magnetic sheet cur ren ts  of the fo rm 

22 
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Fig .  A - 1 .  Source-excited aperture. 

I 
I 
I 

j / =  
I 

Fig.  A-2.  The surface Z. 
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are placed on the surface . With all sources ,  S, -'?/, J acting simul- 
taneously, it may be seen 

original E, H; the fields to the right of 

at the fields to the left of will be the 
- -  L 

will be 0,O ( i . e  . , zero  electr ic  

field and zero magnetic field). The reader  may convince himself of this 
by noting that these fields satisfy Maxwell's equations in all regions and 
satisfy all boundary conditions. 

- /  - /  
Next  suppose the sources  J , K a r e  allowed to radiate by themselv/es , 

with the source S turned off. F rom super  

will generate fields -E, -H to  the right of 

it is c lear  that TI,  R 

-, - 1  

c 
- -  

to the left of 
- /  - /  

But since the fields resulting from J , K  to the left of 
ground sheet and waveguide s t ructure  could be removed without in- 

fluencing the fields t o  the right of . Thus we may consider J , K  as 

radiating in a n  infinite medium with no ground plane. 

a r e  zero ,  the 

c 
- /  -1 

Finally, w e  reverse  the sign of the sources  J ,K. I . e . ,  let 

flow on 2 Then the fields to  the right of 1 will be +E, +E and the 
fields to left a r e  O,O, as shown in F ig .  A - 3 .  

Fig. A - 3 .  Equivalent sou rces .  

24 



- -  
Hence one possible set  of equivalent sources for finding E," to the 

right of 1 would be J ,R  of Eq. (A-4) radiating in the infinite lossy 
medium. 

However, a simpler equivalent source may be found as follows. 
separately. A sin le source '5 o r  Consider the effects of 'j. and 

acting alone wi l l  generate fields on both sides of 

resulting from 5 be EJ ,HJ ,  and let those from k be EKjHK. F o r  an 

field RJ is antisymmetric with respect to 

. Let the fields 2 
electr ic  source '3, the electric field EJ is and the magnetic 

F o r  a magnetic source +- - 
K ,  the field - EK is an t i symmetgc  and the field EK is symmetr ic  with z respect to  2; On the left of , with both '3 and operating, 

- - 
Therefore EJ = -EK and HJ = -HK on the left.  But f rom the symmetry 

properties discussed above , it follows that on the right side of , 
> ' .  c 

However, in this region 

*If a field is symmetr ic  with respect to  the L = 0 plane, it satisfies 

- 
where At is the component of A transverse - to the z = Oplane and A, is 
the z-component (normal component) of A. If the field A is antisymmetric 
with respect to the z = 0 plane, it safisfies 

1691-1 25 



c so that on the right of 

- 
Thus fo r  the source J acting alone, the fields a r e  as shown in 

F i g .  A-4; and for K acting alone, the fields a r e  as shown in F ig .  A-5; 

is meant the symmetr ic  o r  where by f - , f-!? on the left sids of 
E ' on the right side (E and antisymmetric image of the fields 

the fields of the original problem to  the right of 

J and E, it is now c lear  why the fields of both together are  0,O on the 
left and E , H  on the right. 

1 - E 
2 2 

are  c z 'Z 
).  By superimposing - 

- -  

- 
It a l s o  follows that a source 2 x  ting alone o r  a source 2 J  acting 

alone will produce E , H  to the right of . Hence ei ther  one may be used 

alone as a n  equivalent - source for  the aper ture  field of Eq. (A-1). We 
choose t o  use 2K, of course,  because the E field is assumed known. 

z - -  

A 
Hence it has been justified that the source 2K = 2E x n in (A-2)  

is a suitable equivalent source for  E, in (A-1). 

Next  w e  show that Ky in (A-2) generates a field TE  to  the y-axis .  * To do this , w e  make use of the Carson fo rm of the reciprocity theorem 
- -  

- -  Suppose a pa i r  of sources  Ja ,Ka radiate and generate the fields 
Ea ,  Ha, everywhere in space.  
Jb,Rb Lcompletely - independent of the first pa i r )  radiate ,  producing the 
fields Eb,Hb. Then the Carson reciprocity theorem states  that 

Suppose a l so  a second pair  of sources  - 

* The fact that the field is T E  to  the y-axis could a l so  be shown directly 
from the Dyadic Green's Function for  the problem. 
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- E H  
2 '  2 K - -  

Fig .  A - 5 .  Equivalent sources.'  
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I 1  I 1  where Va is the volume occupied by sources  
occupied by sources  "b". 

a and Vb is the volume 

In the present  problem, let the "a" sources  be the magnetic current  
given in (A-2), i . e . ,  

- 
Ja = 0 

n - (A - 10) 
K a  = y Ky - 

Then Ea ,  ga will be the fields of the aper ture  problem. 
let u s  choose a small  e lectr ic  dipole oriented in the ty-direction and 
located anywhere in the region z > 0 .  

As the "b" source , 

I. e. , 

(A-11) 

where 6(x) is a n  impulse function at x = 0. 
the fields produced by this dipole. 
in the y-direction, it is known that the magnetic field Rb will  have no 
y-component. 

The fields Eb, fib will  then be 
In par t icu lar ,  with the dipole oriented 

Therefore,  since Ea has only a y-component, there  resul ts  

and hence from (A-9)  it follows that 

28 



But the integral in (A-13) is merely 

so that 

(A-15) Eay(xsysz) = Os 

which we wished to prove. 
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APPENDIX B 

EVALUATION OF EQUATION (42) 

In Eq. (42) ,  it is necessary to evaluate a n  integral  of the form: 

SW dkx 
(B-1) 1(a,x) = 

e-ikxx 

- w  j n  X 

where c1 is complex and x is rea l .  Define 

To evaluate (42), the substitution 

will be made. Since k is real and Y 

(B-4) Im(kz) 0 ,  

it is noted that f o r  this problem can be res t r ic ted  to the quadrant 

(B-5) a ' r  o 

(B-6) a 4 k o .  

Consider first the case where x > 0 .  To integrate (B-l) ,  let 

(B-7) 

where 

k, = -a cos 8 

// 
(B-8) e = e'+ ie . 
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The path of integration in (B-1) is given by 

(B-9) Im(k,) = 0 

or 

Hence the equation of the contour in  the 8-plane is:  

/ N a 1.1 
(B-11) tan 8 tanh 8 = - 

Since 

(B-13) tim tanh e"= -1 
e"+ - oo 

;i . I  CT.# ~ f :  / 
as 8 goes to  too, tan B approaches - + and as - g w s  tc! - m ,  tan 8 
approaches 4- 

the contour is as  shown in Fig.  B-1, where 

a* a' 
a' 

. If the path nearest  the origin of the 8-plane is chosen, 

(B-14) el I = tan -l(. 2) a' 

Also since 

(B-16) 
I I Ji I/ I I/ Re(&) = Re(-a COS 0 )  -a COS 8 cosh 8 t a s in8  sinh 8 , 
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/ Tr / / 
and for the region 

2 N 
cosh e"> 0 ,  it follows that the point 8' = e:, 9 =-00 corresponds to k, = --oo 

Similarly,  the point e'= e:, 8" = +oo corresponds to  k, = +oo. Hence the 
direction of integration is as indicated by the a r rows  in Fig.  B-1. 

< e'< -, cos 8 > 0 ,  sin 8 > 0 ,  sinh 9 < 0,  and 

Fig.  B-1. Contour of integration. 

With the path of integration located, the cor rec t  sign of the square 
root in Eq. (13-1) can be determined. F rom Eq. (14) (of the main report) ,  

and from Eqs. (15) and (16), the root should be chosen so that 

(B-18) Re&,) 2 0 

(B-19) Im(k,) I O  . 
The cor rec t  choice is 

(B-20) JTi = t a s i n  e .  

That this is correct  may be seen as follows. First, if (B-20) is used, 
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I I 
(B-21) Re(k,) = Re(U sin 8) = a s in  8 cosh 8'4- a' COS 8'sinh 8'' 

and 

I 4 I I /  (B-22)  Im(k,) = Im(U sin 8) = a COS 8'sinh 8 - a' sin 8 cosh 8 . 
/ .9 // I f  

F o r  the region 0, < 8 < 5 ,  s i n e  > 0 ,  COS 8'> 0,  sinh 8 < 0,  Gosh 8 > 0, 
2 so 

I / I/ / I/ 
(B-23) Im(k,) = a COS 8 sinh 8 - a' s in  8 cosh 8 < 0.  

I 

a '*' (B-24)  tan e/ = > - 
cos 8' a' 

o r  

I / 
(B-25)  sin e'> d/COs e , 

a 
(B-26)  cosh e > - si& e", 

so that f rom (B-25) and (B-26) ,  

Re(k,) = a/ sin B'cosh 8 I t a // COS e'sinh 8 # > 0, (B-28)  

I t "  / 1 

2 
F o r  the region - e 8 < 
sinh e"> 0 ,  and cosh 8% 0,  S O  that 

function signs are  s in  8 > 0 ,  COS 8 < 0, 

! I 4v // I // 
(B-29)  Im(k,) = a COS e sinh 8 - a. sin 8 cosh 8 < 0 .  
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a // sin 8 t a n 0  - - < - -  
cos e ’  at 

/ 

(B-30)  

or 

u 
and because e > 0 in this region, 

N 
(B-32)  

so that from (B-31) and (B-32)  

cosh e > sinh e” 

// I H 
(B-33) 

Hence 

cl’sin e’cosh 6 > a’’ (-cos 8 ) sinh 8 . 

1 # / I  / I/ 
(B-34)  Re(k,) = a‘sin 8 cosh 8 t a COS 8 sinh 8 > 0 .  

Thus it is seen that Eqs. (B-18) and (B-19) a r e  satisfied for the 
choice of sign in  (B-20) .  

Therefore with the substitution ( B - 7 ) ,  (B-1) becomes 

I(a ,x) = e t i a x c o s  8 de s (B-35)  

where Ce is the contour in Fig.  B-1. 

F o r  the case where x < 0 ,  Eq. (B-1) may be wri t ten 

dk . 
X 

(B-36) I(a,x) = 

- w  X 
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F o r  this case the substitution 

(B-37) kx = t c1 cos 8 

is appropriate.  The path of integration is found from 

(B-38) Im(kx) = 0 

as above. 
change the result (B-ll) ,  the contour is the same as for  x > 0. 
difference is that the direction of integration is reversed from CeO 
the radical in (B-36), the correct  sign is 

Since the change of sign between (B-7) and (B-38) does not 
The only 

F o r  

(B-39) ja2_k: = t c1 sin 8 

because,  as has been shown above, this sign satisfies (B-18) and (B-19) 
on C e .  

Substituting (B-39) and (B-38) in (B-36)  gives 

t i I x J a c o s  O d e  
(B-40) I(U,X) = - 

- Ce 

where "-Ce"means "along the path Ce but in the opposite direction to  Ce". 

Finally, by changing the direction of integration to  tC8  and dropping 
the minus sign, (B-40) may be written 

I(a,x) = e de . s cos 
(B-41) 

1691-1 

Equation (B-35), which holds only for  x > 0 ,  is seen to  be identical 
with (B-41) for x > 0 ,  and therefore (B-41) is correct  for  either x > 0 o r  
x <  0 .  
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Finally, (B-41) may be evaluated with the aid of Sommerfeld I s  
contour integral for  the Hankel Function* 
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~ 

where the contour CH is shown in Fig.  B-2 along with C. e 

I I I 
I I 
I I 
I 1 
I I 

I 
I 

I 

I 

I 

I 
1 1 

1 I L 

; 3 2  i 2 K  - 
: 2  I 

I 

I I 

I I 
I 

I 
I 
I 

I 

I 

I 
I 

I I 

Fig. B - 2. Hankel function contour. 

Since the integrand in (B-41) has  no singularit ies in the region 
between Ce and CH in the 8-plane, it is plausible that the integral  (B-41) 
will have the same value whether the contour is taken along Ce o r  CH. 
To prove that this is the case,  it is necessa r  
regions in the complex 8-plane for  which eti r l  X a C o s  e approaches ze ro  
as @"goes to f m  . (For  any integral  of the type (B-41), it is c lear  that 
the path of integration must go to  infinity in  these regions i f  the integral  
is to converge .) 

first to  locate those 

First, f rom the relation 

""Partial Differential Equations in Physics ,  ' I  A .  Sommerfeld,  
Academic P r e s s ,  Inc., 1949, Chap. IV.  



i t  may be seen that the dividing lines between the regions of convergence 
and the regions of divergence satisfy the equation 

(B-44) Im(a COS e)  = 0 . 
Hence from (B-10) and (B-ll), the dividing lines satisfy: 

I: a 
a ' .  

I 1; 
(B-45) tan 8 tanh e = - 

Three such lines are shown in F ig .  B-3 .  (The line separating region @ 

Fig. B-3.  Regions of convergence and divergence. 

f rom region @ is the path C8.) Now since 

I 
I - io, / / 

(B-45) 

it follows that 

a = a -ia" = / a l e  = la (cos  el - i l a ) s i n e l  , 
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and it may be seen that for  points in regions @ and @ 

t i l x l a c o s  e 
= t o o  

t i l x l a c o s e  

e"- +oo e'/+- 00 

(B-47) lim e = lim e 

and fo r  points in @ and @ 

t i J x J a c o s  e t i l x ( a  cos 8 
(B-48) lim e = l i m  e = o .  

e'% tw e*+ - oo 

Thus integrals with contours going to  infinity in regions @ and @ 
diverge, those with contours going to infinity in regions A and C 
converge* 
convergent integral, because it is completely in region @ The contour 
Ce of Eq. (B-41) l ies on the boundary between region @) and region @ 

0 0  The Hankel Function contour in F ig .  B-2 of course gives a 

Now the fact that 

may be proved a s  follows. 
C, is the portion of C 
contour at e = SA, C, is the portion of the C 

Consider the closed contour of Fig.  B-4. 
tl lying between -A 5 8 < A ,  C, is a horizontal 

I1 0 
contour between 

-A 2 e I/ i A ,  and C, is a horizontal contour at H 8 #/- - -A Since 

is an  analytic function of e for  all finite values of 8 ,  f rom the Cauchy 
integral theorem it follows that 
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8' 

Fig.  B-4 .  Closed contour of integration. 

(B-51) J' r(e)de= o . 
c1 +C,+C,+CI 

We will show below that 

which will give us  the desired relation between the integral on Ce and 
on CH. 

Consider the integral 
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c2 
I 

r, 

c2 

The left end-point of C2 is given by (from Eq. (B-11)): 

31r and the right end-point of C2 is l e s s  than 7 , so  

(B-55) 

I/ I 
38  
2 
- 

Ix 1 a cos e coshA 
= ( ' e  

J 
f e = e o  

I 
On the whole path C2, cos e is negative and there  is a constant B > 0 
such that 

Consider the function 

3 I / 

[I -+ 5 tan 9 tanh A . 
I I 

F o r  9 = eo ,  it is zero.  Since fo r  every 9 
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d (B-57) =[ tan e'] 2 1, 

the inequality 

1 I 
/ 

(B-58) tan e tanh A 

/ 
holds for  8, i 8 <% . Therefore the integral  in (B-55) satisfies the 
inequality : 2 

- 

31r 
t an  e'tanh A 

(B-59) 

e /= e 0 3 r  

e'= eo 

'3lr 
- . Ix(a/BeosinhA - (xla'B coshA- I x l a ' B ( 7  -0,)sinhA 

=h(A) 
- e  -e - 

lx(a'  B sinh A 

Combining (B-54) through (B-59) and taking the l imit  as A goes to t m  gives 
the result: 

o r  

t i ( x l a  cos ' d e =  . (B-60) lim 
A +m 

CZ 

In a n  analogous manner,  it is simple to show that for the integral 
along C4: 

1691-1 
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I 
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(B-61) 

As A goes t o  infinity, C, becomes C and C, becomes -CH. e 
Therefore from (B-51) 

(B-62) [ e t i  

o r  

(B-63) 

J 

Ce 'CH 

c o s e d e =  e de s ti'x(cr.cOse 

% 

which is the desired result .  

CH 
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A P P E N D I X  C 

In this appendix the method used for  evaluating the aperture  admit- 
tance numerically is discussed. 

From (50), the normalized aperture  admittance is given by 

q=o 6=0 

where 

Making the change of variables 

(C-4) q = R cos e 

give s : 

1691-1 
I 
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A 

A 
(B-R sin @)cos - ( R  s ine )  A I3 (C-6) 

8=0 R=O 

4- C, s i n -  A (R sin e )  ] e -i(k)R dR de 
B 

71 B 

A 

B 

2 s in8  
t 8 E i  1 (A-Rcose)  (R s ine )  

A 

where 

- B  tan 0, - - 
A .  (C-7) 

This change of variables is helpful beca'use the singular point at 
rl = 6 = 0 in the integrand of (C-1) is troublesome for computer evaluation. 
The region of integration in (C-6) in the R-8 plane is shown shaded in 
Fig.  C-1. 

Fig. C -  1. Region of integration in R -0  plane. 
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Next let 

Then 

- i(&) R (c-9)  e = [cos(RC cos 9) -i sin(RC cos + ) ] e  

Ci and C, may be split into their  real  and imaginary parts: 

- R C  sin 9 

(c-11) 

Then the normalized conductance Gn and normalized susceptance Bn, i e , 

(C-12) Yn = Gn + iB, 

1 

I 
1 

t 
1691-1 

A may be written 

eo case 
= 8 2 1 1 {[C,. s in (RCcos9)  + C,i cos(RCcos$)]f(R,e)  

Gn A (C-13) 

e=o R=O 

-R C s in9  
t [ C,, sin( R C cos 9)+C, i (R C COS 9) 1 g(R,e))e 

t 8-B I2 1 { [ Clr sin(R C cos 9)+Cli cos(R C cos 9)]f(R,e)  

dR d9 

- -  v B 
sin e 

A 
e=eo R=O 

-R C s in9  
t [ CZr sin(RCcos9)+CZicos(RCc~s~)]g(R,~))e dR d+ 
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A 
e o  cos0  

= 8 1 1 ([ Clr COS(R C COS +)-C,i sin(R C cos +)]f(R,e)  Bn A (C- 14) 

IT B - -  
sin 8 

t 8-B i2 
A 

{[C,. c o s ( R C c o s ~ ) - C , i  s in(RCcos+)] f (R,e)  

e=eo R=O 

dR de 
-R C s in+  +[ C . C O S ( R C C O S ~ ) - C ~ ~  s i n ( R C c o ~ + ) l g ( R , ~ ) ) e  

Z r  

where 

These integrals have been evaluated numerically on the IBM 1620 
Digital computer at Ohio State. The procedure used is as follows. 

Each double integral is evaluated as a n  i terated integral, the in- 
tegration on R being done first.  
First, with 8 held constant a t  each of the values 0 ,  0.1 ( T T / ~ ) ,  OO2(a/2), 
... 9 ( a / 2 ) ,  the R-integral is computed by breaking the range of R into 
ten subintervals, evaluating the integrand at the end-points of the sub- 
intervals,  and summing according to Simpson's rule .  These values, which 
form the integrand for  the 0-integral, a r e  then summed again by Simpson's 
rule to  evaluate the 8-integral .  

Simpson's rule is used throughout. 

The program for  these calculations was  wri t ten in Fortran' (OSU 
Version 2)  and is included below. 
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